September 25th, 2013

Gradient Boosting Machine in III Acts: Trevor Hastie, Netflix & 0xdata

RSS icon RSS Category: Uncategorized
Fallback Featured Image

Gradient Boosting Machine in III Acts: Dr. Trevor Hastie, Netflix & 0xdata. Triple Header on Boosting & GBM:
Act I: Trevor Hastie, Of Stanford Mathematical Sciences, the mathematician behind Lasso & GBM speaks of the nuances of the Algorithm.
Act II: Cliff Click, CTO of 0xdata, the implementor of parallel and distributed GBM.
Act III: Antonio Molins, Data Scientist at Netflix, who uses GBM in his practice of data science for Marketing Algorithmic Models.
Boosting is a simple strategy that produces dramatic improvement in prediction performance. It works by sequentially applying a Classification Algorithm to reweighted versions of training data and taking the weighted majority vote of the sequence of classifiers produced.

“In the last 10 years my colleagues and I have been drawn into the machine learning domain, probably after the lure of neural networks. This has led us to offer a statistical perspective on novel and popular techniques arising outside of statistics, such as boosting and support-vector machines. This culminated in our 2001 book “Elements of Statistical Learning”, but the interest continues.”
-Trevor Hastie, http://www.stanford.edu/~hastie

GBM Implementation:

H2O https://github.com/0xdata/h2o/tree/master/src/main/java/hex/gbm
R: http://cran.r-project.org/web/packages/gbm/gbm.pdf<

References:

http://www.stanford.edu/~hastie/Papers/AdditiveLogisticRegression/alr.pdf

Leave a Reply

What are we buying today?

Note: this is a guest blog post by Shrinidhi Narasimhan. It’s 2021 and recommendation engines are

July 5, 2021 - by Rohan Rao
The Emergence of Automated Machine Learning in Industry

This post was originally published by K-Tech, Centre of Excellence for Data Science and AI,

June 30, 2021 - by Parul Pandey
What does it take to win a Kaggle competition? Let’s hear it from the winner himself.

In this series of interviews, I present the stories of established Data Scientists and Kaggle

June 14, 2021 - by Parul Pandey
Snowflake on H2O.ai
H2O Integrates with Snowflake Snowpark/Java UDFs: How to better leverage the Snowflake Data Marketplace and deploy In-Database

One of the goals of machine learning is to find unknown predictive features, even hidden

June 9, 2021 - by Eric Gudgion
Getting the best out of H2O.ai’s academic program

“H2O.ai provides impressively scalable implementations of many of the important machine learning tools in a

May 19, 2021 - by Ana Visneski and Jo-Fai Chow
Regístrese para su prueba gratuita y podrá explorar H2O AI Hybrid Cloud

Recientemente, lanzamos nuestra prueba gratuita de 14 días de H2O AI Hybrid Cloud, lo que

May 17, 2021 - by Ana Visneski and Jo-Fai Chow

Start your 14-day free trial today