September 12th, 2018

Automatic Feature Engineering for Text Analytics – The Latest Addition to Our Kaggle Grandmasters’ Recipes

Category: Data Science, Driverless AI, GPU, NLP

According to Kaggle’s ‘The State of Machine Learning and Data Science’ survey, text data is the second most used data type at work for data scientists. There are a lot of interesting text analytics applications like sentiment prediction, product categorization, document classification and so on.

In the latest version (1.3) of our Driverless AI platform, we have included Natural Language Processing (NLP) recipes for text classification and regression problems. Our platform has the ability to support both standalone text and text with other numerical values as predictive features. In particular, we have implemented the following recipes and models:

– **Text-specific feature engineering recipes**:
– TFIDF, Frequency of n-grams
– Truncated SVD
– Word embeddings

– **Text-specific models to extract features from text**:
– Convolutional neural network models on word embeddings
– Linear models on TFIDF vectors

A Typical Example: Sentiment Analysis

Let us illustrate the usage with a classical example of sentiment analysis on tweets using the US Airline Sentiment dataset from Figure Eight’s Data for Everyone library. We can split the dataset into training and test with this simple script. We will just use the tweets in the ‘text’ column and the sentiment (positive, negative or neutural) in the ‘airline_sentiment’ column for this demo. Here are some samples from the dataset:

Once we have our dataset ready in the tabular format, we are all set to use the Driverless AI. Similar to other problems in the Driverless AI setup, we need to choose the dataset and then specify the target column (‘airline_sentiment’).

Since there are other columns in the dataset, we need to click on ‘Dropped Cols’ and then exclude everything but ‘text’ as shown below:

Next, we will need to make sure TensorFlow is enabled for the experiment. We can go to ‘Expert Settings’ and switch on ‘TensorFlow Models’.

At this point, we are ready to launch an experiment. Text features will be automatically generated and evaluated during the feature engineering process. Note that some features such as TextCNN rely on TensorFlow models. We recommend using GPU(s) to leverage the power of TensorFlow and accelerate the feature engineering process.

Once the experiment is done, users can make new predictions and download the scoring pipeline just like any other Driverless AI experiments.

Bonus fact #1: The masterminds behind our NLP recipes are Sudalai Rajkumar (aka SRK) and Dmitry Larko.

Bonus fact #2: Don’t want to use the Driverless AI GUI? You can run the same demo using our Python API. See this example notebook.

Seeing is believing. Try Driverless AI yourself today. Sign up here for a free 21-day trial license.

Until next time,
SRK and Joe

About the Authors

Jo Fai Chow
Jo-Fai Chow

Jo-fai (or Joe) has multiple roles at H2O.ai. He is best known as the #360Selfie guy nowadays. On LinkedIn, he is the data science evangelist and community manager but everyone knows that his photography skills totally overshadow his data science knowledge these days. On Twitter, he sounds like a die-hard MATLAB fanboy with the handle @matlabulous (because MATLAB was his favourite tool at Uni). Since joining H2O.ai in 2016, Joe has delivered H2O talks/workshops in 40+ cities around Europe and US. Before joining H2O, he was in the business intelligence team at Virgin Media where he developed data products to enable quick and smart business decisions. He also worked remotely for Domino Data Lab as a data science evangelist promoting products via blogging and giving talks at external events.

Sudalai Rajkumar

Leave a Reply

Fallback Featured Image
H2O World Explainable Machine Learning Discussions Recap

Earlier this year, in the lead up to and during H2O World, I was lucky

April 16, 2019 - by Patrick Hall and Navdeep Gill
Building AI/ML models on Lending Club Data, with H2O.ai — Part 2

In Part 1 of this series earlier, we looked at how to download data from

April 15, 2019 - by Vinod Iyengar and Karthik Guruswamy
Fallback Featured Image
H2O-3, Sparkling Water and Enterprise Steam Updates

We are excited to announce the new release of H2O Core, Sparkling Water and Enterprise

April 10, 2019 - by Venkatesh Yadav
H2O Release 3.24 (Yates)

There’s a new major release of H2O, and it’s packed with new features and fixes!

April 2, 2019 - by Michal Kurka
Building AI/ML models on Lending Club Data, with H2O.ai — Part 1

Lending Club publishes its basic loan databases to the public and a full version to

March 28, 2019 - by Karthik Guruswamy and Vinod Iyengar
AI/ML Model Scoring – What Good Looks Like in Production

One of the main reasons why we build AI/Machine Learning models is for it to

March 10, 2019 - by Karthik Guruswamy

Join the AI Revolution

Subscribe, read the documentation, download or contact us.

Subscribe to the Newsletter

Start Your 21-Day Free Trial Today

Get It Now
Desktop img