April 2nd, 2020

Brief Perspective on Key Terms and Ideas in Responsible AI

RSS icon RSS Category: Data Science, Explainable AI, Machine Learning, Responsible AI

INTRODUCTION

As fields like explainable AI and ethical AI have continued to develop in academia and industry, we have seen a litany of new methodologies that can be applied to improve our ability to trust and understand our machine learning and deep learning models. As a result of this, we’ve seen several buzzwords emerge. In this short post, we look to define these newish terms as H2O.ai sees them in hopes of fostering discussions between machine learning practitioners and researchers, and all the diverse types of professionals (e.g., social scientists, lawyers, risk specialists) it takes to make machine projects successful. We’ll close by discussing responsible machine learning as an umbrella term and by asking for your feedback. You can also watch this webinar for a deeper dive. 

VOCABULARY QUIZ

Explainable AI (XAI):  The ability to explain a model after it has been developed

One of the initial criticisms around machine learning was the inability to do a robust post-hoc analysis of the model and how it came to the conclusions that it did. Explainability refers to our ability to quantify the decision-making weightings that the model ultimately landed on. 

Example: SHAP

Interpretable Machine Learning:  Transparent model architectures and increasing how intuitive and understandable ML models can be

By nature, some models are more intuitive to understand than others. A simple decision tree is significantly more interpretable for a person than a complex ensemble model or deep neural network. When we discuss interpretability, we are referring to how easy to understand and describe the inner workings of the model architecture is. 

Example: Explainable Boosting Machines

Ethical AI:  Sociological fairness in machine learning predictions (i.e., whether one category of person is being weighted unequally)

Financial Services, in the US, companies have been required for a long time to be able to prove that their algorithm driven decisions did not treat one demographic of a person more unfairly than another (and explain how they know), when we consider Ethical or Fair AI, this is what we are describing for the most part. Whether it is ethnicity, gender, age, income, geographic location or otherwise, we aim to increase organizations’ understanding and confirmation that they are not perpetuating discrimination with their algorithms.

Example: AIF360

Secure AI:  Debugging and deploying ML models with similar counter-measures against insider and cyber threats as would be seen in traditional software

Machine learning models and algorithms face cybersecurity threats just as software and traditional technology do. When we discuss AI Security, we are looking to understand how “at risk” your model is to data poisoning, model hacking or other emerging threats to machine learning ecosystems.

Example: cleverhans

Human-Centered AI:  User interactions with AI and ML systems

AI is often designed and described as the opportunity to replicate and replace human tasks. Removing people from the process completely, however, is not a responsible approach to deploying AI at scale. We look to define Human-Centered AI as the level of human interaction and involvement that can be had in your AI program. This is essentially the UI and UX of AI.

Example: What-if Tool

RESPONSIBLE AI

Responsible AI is perhaps an even newer phrase that we, along with others, are starting to use as an umbrella term for all the different sub-disciplines mentioned above. We also see compliance, whether that’s with GDPR, CCPA, FCRA, ECOA or other regulations, as an additional and crucial aspect of responsible AI. 

Figure: A Venn diagram for Responsible AI.

To summarize, we have not developed this list to be perfect, complete or a single source of truth. We put this out to help define a list of critical industry terminology as we view them at H2O.ai with respect to our research and products. If you have ideas, critiques, or otherwise, we welcome conversations on the subject.  It is evolving quickly, and we aim to evolve with it.

About the Author

Benjamin Cox

Ben Cox is a Director of Product Marketing at H2O.ai where he helps lead Responsible AI market research and thought leadership. Prior to H2O.ai, Ben held data science roles in high-profile teams at Ernst & Young, Nike, and NTT Data. Ben holds a MBA from the University of Chicago Booth School of Business with multiple analytics concentrations and a BS in Economics from the College of Charleston.

Leave a Reply

H2O.ai logra gran posicionamiento en integridad de visión en el cuadrante Visionarios del Cuadrante Mágico de Gartner 2021 para Data Science y Machine Learning

En H2O.ai, nuestra misión es democratizar la IA y creemos que impulsar el valor de

April 11, 2021 - by Read Maloney, SVP of Marketing
Safer Sailing with AI

In the last week, the world watched as responders tried to free a cargo ship

April 1, 2021 - by Ana Visneski, Jo-Fai Chow and Kim Montgomery
H2O AI Hybrid Cloud: Democratizing AI for Every Person and Every Organization

Harnessing AI's true potential by enabling every employee, customer, and citizen with sophisticated AI technology

March 24, 2021 - by Parul Pandey
H2O.ai é a mais avançada por sua capacidade de execução no quadrante dos visionários no relatório do Gartner de Ciências de Dados e Machine Learning em 2021

*Este artigo foi originalmente escrito em inglês pelo SVP de Marketing, Read Maloney, e traduzido

March 16, 2021 - by Read Maloney, SVP of Marketing
H2O.ai Placed Furthest in Completeness of Vision in 2021 Gartner Data Science and Machine Learning Magic Quadrant in the Visionaries Quadrant.

At H2O.ai, our mission is to democratize AI, and we believe driving value from data

March 9, 2021 - by Read Maloney, SVP of Marketing
Learning from others is imperative to success on Kaggle says this Turkish GrandMaster

In conversation with Fatih Öztürk: A Data Scientist and a Kaggle Competition Grandmaster. In this series

February 15, 2021 - by Parul Pandey

Join the AI Revolution

Subscribe, read the documentation, download or contact us.

Subscribe to the Newsletter

Start Your 21-Day Free Trial Today

Get It Now
Desktop img