June 12th, 2018

Time is Money! Automate Your Time-Series Forecasts with Driverless AI

RSS icon RSS Category: Driverless AI
Details about H2o ai experiment

Time-series forecasting is one of the most common and important tasks in business analytics. There are many real-world applications like sales, weather, stock market, energy demand, just to name a few. We strongly believe that automation can help our users deliver business value in a timely manner. Therefore, once again we translated our Kaggle Grand Masters’ time-series recipes into our automatic machine learning platform Driverless AI (version 1.2). This blog post introduces the new time-series functionality with a simple sales forecasting example.
The key features/recipes that make automation possible are:

  • Automatic handling of time groups (e.g. different stores and departments)
  • Robust time-series validation
    • Accounts for gaps and forecast horizon
    • Uses past information only (i.e. no data leakage)
  • Time-series specific feature engineering recipes
    • Date features like day of week, day of month etc.
    • AutoRegressive features like optimal lag and lag-features interaction
    • Different types of exponentially weighted moving averages
    • Aggregation of past information (different time groups and time intervals)
    • Target transformations and differentiation
  • Integration with existing feature engineering functions (recipes and optimization)
  • Automatic pipelines generation (see this blog post)

A Typical Example: Sales Forecasting

Below is a typical example of sales forecasting based on Walmart competition on Kaggle. In order to frame it as a machine learning problem, we formulate the historical sales data and additional attributes as shown below:
Raw data:
Table for store sales
Data formulated for machine learning:
Table for departement_strore
Once you have your data prepared in tabular format (see raw data above), Driverless AI can formulate it for machine learning and sort out the rest. If this is your very first session, the Driverless AI assistant (new feature in version 1.2) will guide you through the journey.
Alert for driverless ai
Similar to previous Driverless AI examples, users need to select the dataset for training/test and define the target. For time-series, users need to define the time column (by choosing AUTO or selecting the date column manually). If weighted scoring is required (like the Walmart Kaggle competition), users can select the column with specific weights for different samples.
Details about H2o ai experiment
If users prefer to use automatic handling of time groups, they can leave the setting for time groups columns as AUTO.
simple settings
Expert users can define specific time groups and change other settings as shown below.
Data about simple settings
Once the experiment is finished, users can make new predictions and download the scoring pipeline just like any other Driverless AI experiments.
Walmart demo data
Seeing is believing. Try Driverless AI yourself today. Sign up here for a free 21-day trial license.
Until next time,
Joe
Bonus fact: The masterminds behind our time-series recipes are Marios Michailidis and Mathias Müller so internally we call this feature AutoM&M.

About the Author

Jo-Fai Chow

Jo-fai (or Joe) has multiple roles (data scientist / evangelist / community manager) at H2O.ai. Since joining the company in 2016, Joe has delivered H2O talks/workshops in 40+ cities around Europe, US, and Asia. Nowadays, he is best known as the H2O #360Selfie guy. He is also the co-organiser of H2O's EMEA meetup groups including London Artificial Intelligence & Deep Learning - one of the biggest data science communities in the world with more than 11,000 members.

Leave a Reply

H2O.ai logra gran posicionamiento en integridad de visión en el cuadrante Visionarios del Cuadrante Mágico de Gartner 2021 para Data Science y Machine Learning

En H2O.ai, nuestra misión es democratizar la IA y creemos que impulsar el valor de

April 11, 2021 - by Read Maloney, SVP of Marketing
Safer Sailing with AI

In the last week, the world watched as responders tried to free a cargo ship

April 1, 2021 - by Ana Visneski, Jo-Fai Chow and Kim Montgomery
H2O AI Hybrid Cloud: Democratizing AI for Every Person and Every Organization

Harnessing AI's true potential by enabling every employee, customer, and citizen with sophisticated AI technology

March 24, 2021 - by Parul Pandey
H2O.ai é a mais avançada por sua capacidade de execução no quadrante dos visionários no relatório do Gartner de Ciências de Dados e Machine Learning em 2021

*Este artigo foi originalmente escrito em inglês pelo SVP de Marketing, Read Maloney, e traduzido

March 16, 2021 - by Read Maloney, SVP of Marketing
H2O.ai Placed Furthest in Completeness of Vision in 2021 Gartner Data Science and Machine Learning Magic Quadrant in the Visionaries Quadrant.

At H2O.ai, our mission is to democratize AI, and we believe driving value from data

March 9, 2021 - by Read Maloney, SVP of Marketing
Learning from others is imperative to success on Kaggle says this Turkish GrandMaster

In conversation with Fatih Öztürk: A Data Scientist and a Kaggle Competition Grandmaster. In this series

February 15, 2021 - by Parul Pandey

Join the AI Revolution

Subscribe, read the documentation, download or contact us.

Subscribe to the Newsletter

Start Your 21-Day Free Trial Today

Get It Now
Desktop img